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While the breakdown in similarity between turbulent transport of heat and momentum
(or Reynolds analogy) is not disputed in the atmospheric surface layer (ASL) under
unstably stratified conditions, the causes of this breakdown are still debated. One reason
for the breakdown is differences between how coherent structures transport heat and
momentum, and their differing responses to increasing instability. Monin – Obukhov
Similarity Theory (MOST), which hypothesizes that only local length-scales play a role
in ASL turbulent transport, implicitly assumes that large-scale structures are inactive,
despite their large energy content. Widely adopted mixing-length models also rest on this
assumption in the ASL. The difficulty of characterizing low-wavenumber turbulent motions
with field measurements motivates the use of high-resolution Direct Numerical Simulation
(DNS), which is free from subgrid-scale parametrizations and ad hoc assumptions near
the boundary. Despite the low Reynolds number and idealized geometry of the DNS,
DNS-estimated MOST functions are consistent with ASL field experiments, as are low-
frequency features of the spectra. Parsimonious spectral models for MO stability correction
functions for momentum (φm) and heat (φh) are derived, based on idealized vertical velocity
variance and buoyancy variance spectra fit to the corresponding DNS spectra. For φm, a
spectral model, based only on local length-scales, matches DNS and field measurements
well. In contrast, for φh, the model is substantially biased unless contributions from larger
length-scales are also included. These results are supported by sensitivity analyses based on
field measurements that are independent of the DNS. They show that ASL heat transport
is not MO-similar, even under mild stratification, and in the absence of entrainment,
non-stationarity and canopy effects. It further suggests that the breakdown of the Reynolds
analogy is at least partially caused by the influence of large eddies on turbulent heat
transport.
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1. Introduction

Turbulent transport processes dominate the exchange of heat,
momentum and scalars between the Earth’s surface and its
lower atmosphere. During the day, surface turbulence is often
both shear- and buoyancy-generated, greatly complicating the
modelling of these exchanges. Monin – Obukhov Similarity

Theory (MOST) has been the dominant theory for describing
these exchanges in the atmospheric surface layer (ASL). First
introduced six decades ago, MOST has made it possible to
measure and model turbulent fluxes in the ASL, which is typically
characterized by very high Reynolds numbers. MOST assumes
the flow statistics are governed by four parameters, which can
all be measured in the lower atmosphere (Monin and Obukhov,

c© 2017 Royal Meteorological Society

http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0002-8362-4761


K. A. McColl et al.

1954). Given this assumption, it uses dimensional analysis to
relate normalized flow statistics to a single, non-dimensional
stability parameter, ζ . Distortions of the mean velocity and
buoyancy profiles, due to thermal stratification, are also related
solely to ζ (φm(ζ ) and φh(ζ ), respectively). These functions
can be interpreted as adjustments to the near-neutral turbulent
eddy diffusivities of momentum and heat, respectively. The exact
functional forms relating the flow statistics and eddy diffusivities
to ζ are not prescribed by MOST. They have been typically
obtained from field experiments, and often display significant
scatter (e.g. Businger et al., 1971). Yet, despite their limitations,
these functions are widely used to parametrize surface layer
turbulence in weather and climate models, with implications
for modelled boundary-layer dynamics (Brasseur and Wei, 2010;
Shin and Hong, 2011; Bosveld et al., 2014).

It is commonly assumed that the turbulent transport of heat and
momentum are similar (the so-called ‘Reynolds analogy’, where
φm = φh). While φm and φh are comparable for mildly stable and
near-neutral conditions, they differ under unstable conditions
(Kaimal and Finnigan, 1994). The breakdown of the Reynolds
analogy implies differences in the mechanisms governing the
turbulent transport of heat and momentum. Turbulent coherent
structures, and their dependence on stratification, may be
one plausible mechanism explaining this difference (de Bruin
et al., 1993; Choi et al., 2004; Li and Bou-Zeid, 2011). In the
absence of heating, the characteristic coherent structure in wall-
bounded turbulent flows is the hairpin vortex (e.g. Head and
Bandyopadhyay, 1981; Perry and Chong, 1982; Adrian, 2007).
These structures are mainly confined to the near-wall region,
although they can sometimes extend across the full boundary-
layer height. In the presence of heating, the hairpin vortices
increase their inclination angle away from the wall (Hommema
and Adrian, 2003), before ultimately forming vertical thermal
plumes, spanning the full boundary-layer height (Kaimal and
Finnigan, 1994).

The fundamentally different vertical length-scales of these two
types of coherent structures is not accommodated by many
models of atmospheric turbulence. For instance, a commonly
used model for the ASL requires that all turbulent length-scales
must be proportional to a master length-scale lm, often specified
to be proportional to the height above the surface (Mellor,
1973; Mellor and Yamada, 1982), with empirical adjustments to
allow variations with stability conditions (Therry and Lacarrere,
1983; Nakanishi, 2001). Even with considerable tuning of
parameters, this class of models struggles to reproduce the
observed dissimilarity between φm and φh in unstable conditions
(Nakanishi, 2001). Therefore, a model based on a single length-
scale seems insufficient. Yet, for computational tractability, it is
clearly essential to limit the number of modelled length-scales.

A natural framework for parsimoniously modelling multiple
length-scales is by modelling the spectra of turbulent fluctuations.
The shape and magnitude of the spectra are constrained by
theory and observations. The most well-established constraint
is from Kolmogorov’s scaling in the so-called inertial range,
encompassing turbulent motions much larger than viscous
dissipation scales, but much smaller than the flow’s integral
length-scale (Kolmogorov, 1941). This scaling has been exploited
in a range of studies seeking to explain the shapes of φm (Katul
et al., 2011; Li et al., 2012, 2016a; Salesky et al., 2013), φh

(Katul et al., 2013) and related quantities, such as the turbulent
Prandtl number (Katul et al., 2014; Li et al., 2015a, 2015b) and
turbulent Schmidt number (Katul et al., 2016). However, while
Kolmogorov scaling is well-established in the inertial range, the
scaling of larger eddy length-scales (outside the inertial range)
is more uncertain. These scales have been modelled simply
in all previous studies, usually qualitatively based on limited
observations from field experiments. However, field experiment
spectra are particularly susceptible to estimation errors at low
wavenumbers, and are usually substantially filtered in this range
(Kaimal et al., 1972; Högström et al., 2002). Hence, there is

still considerable uncertainty about the role of large eddies in
determining φm and φh (Katul et al., 2013).

The weaknesses of field observations for characterizing low-
wavenumber turbulent motions motivates the use of high-
resolution simulations. Khanna and Brasseur (1997) were the
first to use large-eddy simulation (LES) to test the validity
of MOST. However, the choice of a subgrid-scale (SGS) filter
used in LES has a significant, and uncertain, impact on LES
outputs in the near-wall region, precisely where MOST applies
(Brasseur and Wei, 2010). In contrast to LES, DNS resolves
all scales of the flow, avoiding the need for SGS filters and
ad hoc stitching between the wall and the fluid, but at the price
of much greater computational burden and reduced inertial
subrange. Since the computational cost scales with Reynolds
number, DNS is only viable for turbulent simulations of low-to-
moderate Reynolds number flows. (Sullivan and Patton, 2011,
show that LES also implicitly introduces an effective Reynolds
number that is restricted to low-to-moderate values). By ‘low-
to-moderate Reynolds numbers’, we refer to flows where the
Reynolds number is sufficiently large to generate eddies across
a broad range of sizes, but the separation between scales where
turbulence is produced and dissipated is not as extensive as in
the ASL. Perhaps for this reason, prior studies that used DNS
to test MOST scaling in an (idealized) mildly unstable ASL are
rare or perhaps absent altogether. As shown here, despite the low
Reynolds number and highly idealized conditions, DNS estimates
of MOST similarity functions for mildly unstable conditions are
largely consistent with field experiments, suggesting DNS may
provide useful insights into the role of large eddies in determining
the shapes of φm and φh.

The objective of this work is to diagnose the role of large-eddy
contributions to differences between φm and φh in mildly unstable
conditions, using a DNS of a highly idealized ASL. The paper is
organized as follows. In section 2, idealized models of φm and
φh are introduced, based on parametrizations of the spectra of
turbulent vertical velocity variance and buoyancy. In section 3,
we describe the DNS used in this study, and compare it with field
experiment measurements. Results are presented and discussed
in sections 4 and 5, respectively.

2. Theory

In this section, we review MOST, and derive spectral models for
the MOST stability functions φm and φh. Throughout, x, y and z
refer to the streamwise, lateral and vertical directions, respectively;
and u, v and w refer to the streamwise, lateral and vertical
velocities. The buoyancy is defined as b = β(T − T0), where
T is temperature, β = g/T0 is the buoyancy parameter under
the Boussinesq approximation, g is gravitational acceleration,
and T0 is a reference temperature. Buoyancy is adopted as the
state variable rather than T or potential temperature θ in this
study. Furthermore, the effects of water vapour on air density
are ignored (i.e. we consider a dry ASL). The variables u, v, w
and b are decomposed into Reynolds-averaged mean states (e.g.
for streamwise velocity, denoted U) and turbulent excursions
(e.g. u′) such that u = U + u′, with similar notation used for the
other variables.

2.1. Monin – Obukhov similarity theory

We first review the assumptions and terminology of MOST. The
ASL begins at a height sufficiently high above the land surface as
to be unaffected by surface roughness elements, and extends to
a height of approximately 50 – 100 m into the atmosphere, such
that it is still unaffected by the Coriolis force (e.g. Brutsaert, 1982;
Kaimal and Finnigan, 1994). In this layer, MOST predicts the
turbulent flow is governed by four parameters: the height above
ground or zero-plane displacement z, the buoyancy parameter
β, the friction velocity u2∗ = τ/ρ and the ‘surface’ kinematic
heat flux q/(ρcp) (Monin and Obukhov, 1954). Here, τ/ρ is the
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‘surface’ shear stress, ρ is the fluid density, q is the surface sensible
heat flux, and cp is the fluid’s specific heat capacity at constant
pressure. ‘Surface’ stresses and fluxes are in fact typically estimated
several metres above the land surface using eddy covariance
measurements (Högström, 1988; Kaimal and Finnigan, 1994).
These four parameters are used to define a velocity scale (u∗),
buoyancy scale (b∗ = βq/(ρcpu∗)), and length-scale

L = −u3∗
kvβ

q
ρcp

, (1)

where kv is von Kármán’s constant (a value of 0.41 is used in this
study, consistent with the bulk of experiments). MOST assumes
that turbulent diffusion dominates molecular diffusion, that the
flow is stationary and planar-homogeneous, that subsidence
is negligible and that there is no horizontal pressure gradient
(Brutsaert, 1982). Under these conditions, the momentum and
energy budgets reduce to

u′w′ = −u2
∗ (2)

and

w′b′ = u∗b∗, (3)

respectively. The scales u∗, b∗ and L can be used in dimensional
analysis to relate non-dimensionalized properties of ASL
turbulence to universal similarity functions of ζ = z/L; in
particular, the non-dimensionalized vertical velocity standard
deviation,

φw = σw

u∗
, (4)

non-dimensionalized buoyancy standard deviation,

φb = σb

b∗
, (5)

non-dimensionalized mean velocity gradient,

φm = kvu∗z

−u′w′
dU

dz
, (6)

and non-dimensionalized mean buoyancy gradient,

φh = kvu∗z

w′b′
dB

dz
, (7)

where σ 2
w and σ 2

b are the vertical velocity variance and buoyancy
variance, respectively. Note that φm and φh are related to the
turbulent eddy diffusivities of momentum (Km) and heat (Kh),
and their corresponding ‘mixing lengths’ (lm and lh, respectively)
by the following:

−u′w′ = kvu∗z

φm

dU

dz
= lmu∗

dU

dz
= −Km

dU

dz
, (8)

w′b′ = kvu∗z

φh

dB

dz
= lhu∗

dB

dz
= −Kh

dB

dz
. (9)

The functions relating φm and φh to ζ cannot be specified by
MOST and have typically been estimated from field experiments
(e.g. Businger et al., 1971).

2.2. TKE and buoyancy variance budgets

The MOST variables φw and φb may be viewed as dimensionless
measures of the turbulent vertical kinetic energy and turbulent
potential energy, respectively. We aim to relate these quantities to
the MOST variables linked to turbulent transport of momentum
(φm) and heat (φh). This requires the introduction of the turbulent

kinetic energy (TKE) budget, which is assumed to be at steady
state,

ε = −u′w′ dU

dz
+ w′b′, (10)

where ε is the mean TKE dissipation rate, and we assume
production and dissipation terms dominate in the TKE budget, a
reasonable assumption in the constant flux layer that is tested later
on. This equation can be rewritten in terms of MOST similarity
variables as

ε =
(−u′w′)2

kvu∗z

(
φm

( z

L

)
− z

L

)
. (11)

The steady state buoyancy variance budget can be simplified to

Nb = w′b′ dB

dz
, (12)

where Nb is the buoyancy variance dissipation rate, and we
assume production and dissipation terms dominate the buoyancy
variance budget, as for the TKE budget (this assumption is also
tested later). There are different definitions of Nb in the literature;
we define Nb as the rate of destruction of half the buoyancy
variance, consistent with other references (Kaimal et al., 1972;
Stull, 1988). This relation can be written as

Nb = b2∗u∗
kvz

φh. (13)

2.3. Mixing-length models for φm and φh

To finalize model development, relations linking the dissipation
rates ε and Nb to φw and φb are required. In this section, these
relations are obtained from the assumed vertical velocity variance
spectra Fww(k, z) and the buoyancy variance spectra Fbb(k, z),
where k is the wavenumber in the longitudinal direction. We
show how these relations link to a common class of models in the
literature: ‘mixing-length’ models.

Consider an idealized two-regime spectrum for Fww (Fig-
ure 1(a)) considered in previous studies (e.g. Katul et al., 2013; Li
et al., 2015b):

Fww(k) =
⎧⎨
⎩

CKε2/3k−5/3 for k ≥ kaw,

CKε2/3k−5/3
aw for k < kaw,

(14)

where CK is the Kolmogorov constant for the vertical velocity
(≈ 0.65 from high Reynolds number experiments), and kaw is
a transition wavenumber. Integrating this assumed spectrum

between k = 0 and k = ∞ yields σ 2
w = (5/2)CKε2/3k−2/3

aw . If we
define kaw = 2π/lw, then rearranging gives

ε =
(

2

5CK

)3/2 2πσ 3
w

lw
∝ σ 3

w

lw
. (15)

Here, 2π/lw is the wavenumber corresponding to the peak of the
compensated spectrum kFww (Figure 1(c)). Combining Eqs (11)
and (15) gives

φm

( z

L

)
= z

L
+ 25/2π

(5CK)3/2

(
kvz

lw

)
φ3

w. (16)

This model is dependent on the specification of lw, a length-
scale corresponding to the breakpoint in the Fww spectrum
and the peak of the compensated spectrum kFww (Figure 1).
Experimental measurements demonstrate that this length-scale is
proportional to the mixing-length lm derived from the wind speed
profile across a broad range of atmospheric stability conditions
(Pena et al., 2010). A common specification in the ASL is
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Figure 1. Idealized forms used for Fww and Fbb. (a) Idealized Fww given in Eq. (14), with logarithmic x- and y-axes. (b) Idealized Fbb given in Eq. (17) (dashed line)
and Eq. (20) (solid line), with logarithmic x- and y-axes. (c) Compensated idealized vertical velocity variance spectrum, with logarithmic x-axis and linear y-axis,
highlighting that the spectrum peaks at k = 2π/lw . (d) Compensated idealized buoyancy variance spectrum, with logarithmic x-axis and linear y-axis. Without a k−1

region (dashed line), the compensated spectrum exhibits a distinct peak at k = 2π/lb. When a k−1 region is included (solid line), the spectrum does not have a distinct
peak.

simply lm = kvz (e.g. Mellor, 1973; Mellor and Yamada, 1982),
consistent with Prandtl’s ‘mixing length’ hypothesis (Prandtl,
1925), and Townsend’s ‘attached eddy’ hypothesis (Townsend,
1980). Various empirical corrections (e.g. Therry and Lacarrere,
1983; Nakanishi, 2001; Zilitinkevich et al., 2006) have been
proposed to this model to include dependence of lm on stability
(ζ = z/L). Because lm and lw are proportional to each other, we
refer to Eq. (16) as a ‘mixing-length’ model for φm. One advantage
of working with lw rather than lm is that lw can be independently
estimated from measured Fww. Furthermore, as we will show
in section 2.4, a spectral model (and corresponding spectral
parameters such as lw) can be easily generalized to instances
where more than one length-scale contributes significantly to the
flow variance.

A mixing-length model for φh could be derived in a similar
fashion to that for φm. Consider an idealized two-regime spectrum
for the buoyancy variance Fbb(k) (Figure 1(b), dashed line):

Fbb(k) =
{

CTNbε
−1/3k−5/3 for k ≥ kab,

CTNbε
−1/3k−5/3

ab for k < kab,
(17)

where CT ≈ 0.8 is the Kolmogorov – Obukhov – Corrsin constant,
and kab is a transition wavenumber, analogous to kaw in the vertical
velocity variance spectrum. Integrating this between k = 0 and

k = ∞ gives σ 2
b = (5/2)CTNbε

−1/3k−2/3
ab . If we define kab = 2π/lb,

then

Nb = 25/3π2/3

5CT

σ 2
b ε1/3

l2/3
b

∝ σ 2
b ε1/3

l2/3
b

. (18)

Again, lb corresponds to the transition length-scale 2π/kab.
Alternatively, 2π/lb is the wavenumber corresponding to the

peak of the compensated spectrum kFbb(k) (Figure 1(d), dashed
line). Combining Eqs (18), (15) and (13) gives

φh

( z

L

)
=

(
25/2π

53/2CTC1/2
K

) (
kvz

l1/3
w l2/3

b

)
φwφ2

b . (19)

The mixing-length models rest on the assumption that
contributions from a single length-scale, which evolves with
ζ , dominate the variance of the flow (lw and lb for the
vertical velocity variance and buoyancy variance, respectively).
This assumption implicitly requires that both kFww and kFbb

compensated spectra have distinct peaks associated with unique
eddy sizes. In particular, it assumes that there are minimal
contributions from low-wavenumber components. However,
there is significant evidence to suggest that Fbb contains a
region at low wavenumbers where Fbb ∼ k−1 under conditions
ranging from mildly unstable to mildly stable (Kader and Yaglom,
1991; Katul et al., 1995; Li et al., 2015a,2016b). Therefore, kFbb

is constant in this region, meaning there is no distinct peak
(Figure 1(d), solid line). Consistent with this statement, Kaimal
and Finnigan (1994) note that the locations of peaks in kFbb

(from field experiments) are less predictable than those in kFww

as stability conditions vary. Therefore, no single length-scale
dominates the observed buoyancy variance. We now attempt to
parsimoniously include these length-scales in the analysis.

2.4. New model for φh

In this section, we introduce an idealized form for Fbb, previously
proposed in Li et al. (2015b), and use it to derive a new model for
φh. Consider a new idealized spectrum for the buoyancy variance
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Fbb(k), which incorporates a low-wavenumber k−1 region:

Fbb(k) =

⎧⎪⎪⎨
⎪⎪⎩

CTNbε
−1/3k−5/3 for k ≥ kab,

CTNbε
−1/3k−2/3

ab k−1 for kab > k ≥ k�,

CTNbε
−1/3k−2/3

ab k−1
� for k < k�,

(20)

where kab and k� are transition wavenumbers (Figure 1(b), solid
line). The k−1 region likely appears in the high Reynolds number
limit. When applied to a low Reynolds number DNS, as in this
study, it should be considered an ‘effective’ k−1 region, which
better captures effects of large eddies to first-order. Integrating
Eq. (20) between k = 0 and k = ∞, defining kab = 2π/lb and
k� = 2π/�, substituting Eq. (15) and rearranging gives

Nb = 23/2π

(5CK)1/2

σwσ 2
b

CTl1/3
w l2/3

b

{
5
2 + log

(
�
lb

)} . (21)

Substituting this into Eq. (13) and rearranging gives

φh

( z

L

)
=

(
25/2π

53/2CTC1/2
K

)⎛
⎝ 1

1+ 2
5 log

(
�
lb

)
⎞
⎠

×
(

kvz

l1/3
w l2/3

b

)
φwφ2

b . (22)

Comparing Eqs (19) and (22), the impact of the k−1 region on φh

is the introduction of an extra positive factor

{
1 + 2

5
log

(
�

lb

)}−1

,

which introduces sensitivity to the larger length-scale �. This
factor reduces φh, relative to the mixing-length model, and does
so to a greater extent as the ratio �/lb increases.

3. Sensitivity test based on field measurements

To complement the DNS analysis, in this section we use available
field experiment data to test our spectral models of φm and
φh. We perform sensitivity analyses for relevant variables where
field experiment measurements are unavailable or subject to
significant uncertainty. The aim is to determine whether or not
our models for φm and φh are consistent with available field
measurements.

The field measurements are obtained from a range of previous
studies, which are briefly summarized here. We use measurements
of φw (z/L) and φb (z/L) estimated by Bradley and Antonia
(1979) using data from the 1976 International Turbulence
Comparison Experiment (ITCE). We also use values of φw and φb

estimated by Kader and Yaglom (1990) using data obtained
from the Tsimlyansk field station of the Moscow Institute
of Atmospheric Physics, over the summers of 1981 to 1987.
Additional estimates of φb were obtained from Bradley and
Antonia (1979) based on observations from the 1972 Minnesota
field experiment, described in Lynch and Bradley (1974); and
from Bradley and Antonia (1979) based on observations from
the 1968 Kansas field experiment, described in Haugen et al.
(1971). We use measurements of φm (z/L) and φh (z/L) estimated
in Businger et al. (1971) using observations from the Kansas
field experiment; and estimates published in Högström (1988)
based on observations from a field site in Uppsala, Sweden; and
estimates published in Brutsaert (1982) based on observations
from several field sites in New South Wales, Australia, described
in Dyer and Hicks (1970). Finally, measurements of peaks
of the compensated spectra of vertical velocity variance and
buoyancy variance are obtained from values published in Businger

et al. (1971) based on observations from the Kansas field
experiment.

The required model inputs are φw, φb, lw, lb and �. Empirical
relations for φw and φb as functions of ζ are available from
previous field studies. Since there is considerable scatter around
these relations, we assess the sensitivity of our models to
these relations, using field experiment measurements to set
the bounds of the sensitivity analysis. The bounds are shown
in Figure 2. While the empirical relation for φw appears to
be unbiased, the empirical relation for φb is negatively biased
compared to measurements from multiple field experiments. This
illustrates the importance of considering the effects of variability
around the empirical relations for φw and φb with a sensitivity
analysis.

The length-scales lw, lb and � are estimated from observed
peaks in the compensated spectra of vertical velocity variance
and buoyancy variance. Specifically, we assume that lw and lb
both scale with distance from the wall such that lw = αwz and
lb = αbz, for some αw and αb which can both vary with ζ .
This assumption is justified based on observations and theory
discussed in the previous section, and is necessary to remove
z-dependence in our models of φm and φh. Typically, the
observed peak in the compensated spectrum is reported as a
non-dimensionalized frequency f corresponding to the peak of
the normalized spectrum. Specifically, f = nz/U (where n is
the frequency), which can be linked to a wavenumber using
Taylor’s frozen turbulence hypothesis (Taylor, 1938) via the
relation f = kz/2π . In our model, the vertical velocity variance
spectrum peaks at a wavenumber k = 2π/lw. Therefore, the peak
in the spectrum of vertical velocity variance occurs at a non-
dimensionalized frequency fmw = z/lw = α−1

w . Observations of
fmw are shown in Figure 2, along with bounds for the sensitivity
analysis. We further assume that lw = lb and, therefore, αw = αb.
Finally, in the presence of a k−1 scaling regime, the compensated
buoyancy variance spectrum does not have a unique peak
(Figure 1(d), solid line). A previous field study (Kaimal et al.,
1972) reported estimates of peaks in the compensated buoyancy
variance spectra (fmθ , Figure 2), but it has since been noted
that these apparent peaks are difficult to identify (Kaimal and
Finnigan, 1994). It is plausible that the apparent ‘peaks’ in the
spectrum corresponded to the length-scale �, i.e. fmθ ≈ z/�.
However, given the uncertainty in the relation between fmθ and
�, we impose very wide uncertainty bounds on fmθ in our
sensitivity analysis.

By varying φw, φb, fmw and fmθ within the ranges shown in
Figure 2, we model plausible ranges for φm and φh. The results
of this sensitivity analysis are shown in Figure 3. Both modelled
φm and φh are quite sensitive to reasonable deviations from the
assumed relations above. The proposed mixing-length model for
φm (Eq. (16)) is not obviously inconsistent with measurements,
since the measurements overlap the plausible model predictions of
φm. In contrast, the mixing-length model of φh (Eq. (19)) is clearly
inconsistent with most of the measurements, since most of the
measurements do not overlap the plausible model predictions
for φh, even after accounting for significant uncertainty in
model inputs (lw, lb, φw, φb). The mixing-length model for
φh consistently overestimates observed φh. However, including
contributions from the larger length-scale � appears to resolve
the inconsistency, since the plausible range of model predictions
from Eq. (22) overlap with observed φh.

These results, which are based solely on field experiment
measurements, demonstrate that large eddies (corresponding to
the length-scale �, and included in Eq. (22) but not Eq. (19))
appear to play a necessary role in determining the shape of φh,
a result that is inconsistent with MOST. The presented analysis
establishes that the mixing-length model of φh is deficient, but is
unable to conclusively validate the performance of our alternative
model (Eq. (22)) due to uncertainties in the field measurements.
In the next section, we use a high-resolution simulation of an
idealized ASL to more precisely test these mechanisms.
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Figure 2. Plausible ranges of variables (a) φw , (b) φb, (c) z/�, and (d) 1/αw) used in the sensitivity analysis, based on field measurements. ITCE and Minnesota
measurements obtained from Bradley and Antonia (1979). Kansas observations obtained from Bradley and Antonia (1979), Businger et al. (1971), and Kaimal et al.
(1972). Observations from a range of studies were also obtained from Kader and Yaglom (1990). The empirical fits are standard functional forms fitted to the data in
previous studies (Kaimal and Finnigan, 1994). [Colour figure can be viewed at wileyonlinelibrary.com].

5

4.5

Eq. (16)

Uppsala

Kerang and Gurley

Kansas

Empirical fit

Eq. (19)

Eq. (22)

Uppsala

Kerang and Hay

Kansas

Empirical fit
4

3.5

3

2.5

2

1.5

1

0.5

0
10–2

–ζ (–)

ϕ m
 (–

)

100

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
10–2

–ζ (–)

ϕ h
 (–

)

100

(a) (b)
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Reasonable variations in parameters for the mixing-length model of φm (Eq. (16)) reproduce field measurements. (b) In contrast, the mixing-length model for φh

(Eq. (19)) cannot reproduce the majority of field measurements. The model for φh that includes contributions from a larger length-scale � (Eq. (22)) is able to
reproduce field measurements. Kansas observations obtained from Bradley and Antonia (1979), Businger et al. (1971), and Kaimal et al. (1972). Observations from
a range of studies were also obtained from Kader and Yaglom (1990). Uppsala observations obtained from Högström (1988). Kerang, Gurley and Hay observations
obtained from Brutsaert (1982). The empirical fits are standard functional forms fitted to the data in previous studies (Kaimal and Finnigan, 1994). [Colour figure
can be viewed at wileyonlinelibrary.com].
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4. Simulation

To test the models for φm and φh derived earlier for mildly
unstable conditions (i.e. conditions where the k−1 power law
may appear in buoyancy spectra), a high-resolution simulation
of an idealized ASL is conducted. A DNS of a steady heated
channel flow is performed using the computational fluid dynamics
code MicroHH (http://microhh.org, accessed 1 June 2017;
van Heerwaarden et al., 2017). Effects of non-stationarity, surface
roughness and entrainment are ignored in these simulations.
This is a common idealized configuration used in studying the
atmospheric boundary layer (ABL; e.g. Stevens, 2000), and can
be interpreted as a quasi-steady boundary layer over a smooth
air – water interface, with strong stability in the free troposphere.
Furthermore, this configuration can be used to test the hypotheses
that non-stationarity, surface roughness and/or entrainment play
an essential role in the dissimilarity of φm and φh in unstable
surface layers. If the Reynolds analogy breakdown is observed
in the DNS, then the dissimilarity cannot be solely due to non-
stationarity, surface roughness and/or entrainment. Other factors
must also play a significant role.

The dimensions of the domain are 9.4 m×9.4 m×2 m,
discretized into 1152 × 1152 × 288 grid points. The equations
are discretized in space using a fourth-order, energy-conserving
scheme (Morinishi et al., 1998). A third-order, adaptive step,
Runge – Kutta scheme is used for time-stepping. Random
perturbations are added to the u, v and w velocities to
trigger turbulence. The flow is forced with a fixed mean
streamwise velocity, resulting in a friction Reynolds number
Reτ = u∗R/ν0 = 687, where R = 1 m is the channel half-width,
and ν0 = 10−5 m2 s−1 is the kinematic viscosity. The effects of
the low Reynolds number on the analysis are investigated further
in the next section. The Prandtl number is Pr0 = ν0/κ0 = 1,
where κ0 is the thermal diffusivity. Periodic boundary conditions
are applied in both horizontal dimensions. No-slip boundary

conditions are imposed at both the upper and lower boundaries.
A constant buoyancy flux boundary condition is imposed at
the lower boundary (with constant flux u∗b∗ = 10−6 m2 s−3),
with a zero-flux boundary condition at the upper boundary;
hence, buoyancy accumulates in the channel over time.
However, the flow reaches a quasi-steady state, i.e. the variable
�(z) = B(0, t) − B(z, t) becomes constant in time.

Flow statistics, including the spectra, were estimated at a fixed
height and time using the modelled w and b fields. The statistics
were then averaged across a sufficiently long time period to
include contributions from large-scale flow structures induced by
heating.

MOST applies to the ‘constant flux layer’, where u′w′ and w′b′
do not vary appreciably with height. Furthermore, the TKE and
buoyancy variance budgets are assumed to be equilibrated in this
region, with production balancing dissipation. Figures 4(a) and
(b) show profiles of u′w′ and w′b′, respectively. Both profiles
exhibit a fairly broad peak around z = 0.07 m. In atmospheric
studies, the friction velocity is often estimated from eddy
covariance measurements of u′w′ in the constant flux layer
(Högström, 1988; Kaimal and Finnigan, 1994). We therefore
estimate the friction velocity as

u∗ =
√

−u′w′|z=0.07 m.

This value is only an approximation of the surface friction velocity

uτ =
√

−u′w′|z=0 m.

In our DNS, uτ > u∗ (not shown), consistent with field
measurements using stress plates (Haugen et al., 1971). To ensure
consistency with field measurements, we use u∗ rather than uτ in
this study.
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Figure 5. Monin – Obukhov Similarity Theory (MOST) functions under unstable conditions, estimated from field experiments and the DNS used in this study: (a)
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com].

Figures 4(c) and (d) show the constant-flux layer in the DNS

approximately coincides with a region where the TKE and b′2
budgets are reasonably well equilibrated (i.e. production balances
dissipation). We constrain our analyses to the single contiguous
region where production balances dissipation in both TKE and

b′2 budgets to within ±10% (0.13 ≤−z/L ≤ 0.21). While this
10% variation introduces some error into the analysis, we show
later that the effects are fairly minor. Moreover, from previous
DNS studies of neutral channel flow, it appears that production
and dissipation may never exactly balance in this layer, even at
much higher Reynolds number (Lee and Moser, 2015). While the
constant-flux layer in the DNS is relatively small, it spans a range
of mildly unstable conditions that have received relatively little
attention.

We estimate the length-scales lw, lb and � from the DNS
spectra. We also fit the parameters CT and CK rather than
using the values obtained from previous experiments. This is
because the DNS is at a low Reynolds number, and using values
from high Reynolds number experiments results in a substantial
overestimation of the spectra. To fit the idealized Fww spectrum,
we first choose the value of CK to be the value such that the curve
Fww(k) = CKε2/3k−5/3 lies tangent to the DNS spectrum. Second,
integrating this idealized spectrum gives

kaw = 2π

lw
= 2π

(
2

5CK

)−3/2
ε

σ 3
w

, (23)

allowing lw to be estimated from the estimated value of CK, and
the DNS ε and σw fields. Using a similar approach for Fbb, we
obtain

kab = 2π

lb
= 2π

(
2

5CT

)−3/2 N3/2
b

σ 3
b ε1/2

. (24)

In addition, we fit the new idealized spectrum for Fbb, which
contains a k−1 region. We first choose the value of CT to be the

value such that the curve Fbb(k) = CTNbε
−1/3k−5/3 lies tangent

to the DNS spectrum. Second, we choose the value of kab = 2π/lb
to be the value such that CTNbε

−1/3k−2/3
ab lies tangent to the DNS

compensated spectrum kFbb(k). Finally, integrating the idealized
spectrum and rearranging gives

� = lb
2

exp

(
(2π)2/3σ 2

b

CTl2/3
b Nbε−1/3

− 5

2

)
, (25)

allowing � to be determined from the estimated values of CT and
lb, and the DNS σb, Nb and ε fields.

There are important differences between a low Reynolds
number heated channel flow, and an ASL. We assess the
impact of this difference on our analysis by comparing MOST
statistics, spectra, and integral length-scales estimated from field
experiments with those estimated from the DNS. The integral
length-scale of the vertical velocity variance is defined as

Iw =
∫ ∞

0
ρw(s) ds = π

2

Fww(0)

σ 2
w

, (26)

where ρw(s) is the vertical velocity autocorrelation function. DNS
Iw is estimated using the Fww(0) andσw DNS fields. Integral length-
scales of the buoyancy variance (Ib) and streamwise velocity
variance (Iu) are defined and estimated in a similar fashion.

5. Results

Estimates of several MOST functions from field experiments are
compared with those estimated from the DNS (Figure 5). All
of the DNS-estimated MOST functions lie within the scatter of
estimates from field experiments. For φw, the DNS estimate is at
the low end of the range observed in field experiments.

DNS-estimated spectra are also compared to those estimated
from field experiments (Figure 6). Both the DNS Fww and Fbb
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Figure 6. Comparison of normalized DNS spectra (coloured lines) with field experiment measurements. The non-dimensionalized TKE dissipation rate is defined
φε = kzε/u3∗. (a) Smoothed and averaged spectra at Cedar Hill (circles; Busch and Panofsky, 1968), smoothed and averaged spectra at Kansas (black dashed lines,
0.1 ≤ −ζ ≤ 0.3, Kaimal et al., 1972); individul measurements at Kansas (black crosses; 0.1 ≤ −ζ ≤ 0.3; Kaimal et al., 1972), individual measurements over a tidal flat
(black squares; Miyake et al., 1970), and individual measurements at Vancouver (black dots; Busch and Panofsky, 1968). (b) Smoothed and averaged spectra at Kansas
(black dashed lines, 0 ≤ −ζ ≤ 2; Kaimal et al., 1972), measurements from BOMEX (black circles; 0.11 ≤ −ζ ≤ 0.27; Phelps and Pond, 1971), Ladner (black crosses;
McBean, 1970), San Diego (black dots; 0.12 ≤ −ζ ≤ 0.20; Phelps and Pond, 1971), and over a tidal flat (black squares; Miyake et al., 1970). All field experiment data
obtained from Kaimal et al. (1972). [Colour figure can be viewed at wileyonlinelibrary.com].

spectra exhibit small inertial ranges, decaying more rapidly than
field-observed spectra. This is a result of the low Reynolds number
of the DNS. However, other key features are well-replicated. For
Fww, the DNS spectral peak matches that of field measurements.
While there is considerable scatter at low frequencies, the DNS
spectra match the Kansas data at low frequencies well. For Fbb,
there is considerable scatter in field measurements, particularly
at low frequencies. In particular, the Barbados Oceanographic
and Meteorological Experiment (BOMEX) measurements differ
substantially. Phelps and Pond (1971) suggest this may be due to
radiation effects, although the reasons for the discrepancy are still
unclear (Kaimal et al., 1972). The DNS Fbb spectra lie within the
observational scatter, for low wavenumbers excluding the inertial
and viscous ranges. Both the normalized DNS Fbb spectra, and
those from field measurements, exhibit a relatively flat region
for f < 100, which is not present in the Fww spectra. Overall, the
DNS-estimated spectra are consistent with measurements, both
in terms of magnitude and shape. An exception to this is in the
inertial range, which is small in the DNS due to the low Reynolds
number, resulting in a more rapid drop at higher frequencies in
the DNS spectra.

DNS-estimated integral length-scales are compared to those
estimated from a field experiment over a lake (Figure 7). The DNS-
estimated ratio Ib/Iw matches field measurements well. While
the range of stabilities ζ considered in the DNS simulations
is relatively small, it covers a range where Iw is growing most
rapidly relative to Ib. The DNS-estimated ratio Iu/Iw does not
fit measurements as well as Ib/Iw, although the DNS estimates
lie within the 95% confidence interval of the field measurements
(not shown). This discrepancy is possibly due to the influence
of the side walls in the DNS, limiting the development of large
structures in the horizontal plane. Nevertheless, the streamwise
and spanwise domain lengths for the DNS used in this study are

larger than those used in comparable studies (Iida and Kasagi,
1997; Dong and Lu, 2005; Zonta and Soldati, 2013; Garai et al.,
2014). The DNS is able to reproduce the relative evolution of
integral length-scales of buoyancy and vertical velocity variance,
which are most relevant to this study.

Idealized spectra for Fww and Fbb are fit to the DNS-observed
spectra, and compared for a few example values of −ζ in Figure 8.
Overall, the idealized forms capture the first-order features of
the spectra. For Fww, the spectra are underestimated at low
frequencies, and overestimated at high frequencies. Nevertheless,
the spectral peaks, which define lw, are well-approximated by the
idealized form. In contrast, for Fbb, the DNS-observed spectra
are not well-approximated unless a k−1 region is included in the
idealized form. Even then, high wavenumbers are overestimated,
and low wavenumbers are underestimated. Furthermore, the k−1

region in the idealized form misses some curvature in the observed
spectra. Still, the k−1 idealized form captures, to leading order, the
fact that Fbb has significant contributions from low wavenumbers,
and the location where the k−1 region begins.

The estimated length-scales lw, lb and � are compared with
field measurements of fmax, the non-dimensionalized frequency
corresponding to the maximum of the normalized spectrum
(Figure 9). Recall that the non-dimensionalized frequency
f = nz/U (where n is the frequency) is linked to the wavenumber
by Taylor’s frozen turbulence hypothesis (Taylor, 1938), via the
relation f = kz/2π . Therefore, for our model of Fww, fmax = z/lw.
Models and field experiments yield consistent estimates, in the
range of 0.5 – 0.8. Both estimates of lw and lb are reasonably
consistent with field measurements. The estimated lb is larger
than the estimated lw. The field measurements also show that f θ

max
is substantially lower than f w

max. This demonstrates the significance
of low-wavenumber contributions to the buoyancy variance. For
the idealized model of Fbb, there is no unique maximum, with the
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spectrum reaching its maximum in the interval z/� ≤ f ≤ z/lb.
However, if z/� is considered as an imperfect proxy for f θ

max, a
much closer agreement emerges, compared to using f θ

max = z/lb.
DNS-estimated stability correction functions (φm and φh)

are now compared with modelled values in Figure 10. The
modelled function φm estimated using Eq. (16) matches the DNS-
estimated function reasonably. Both DNS and model estimates
agree closely with the Businger – Dyer function (Businger et al.,
1971). Correcting for deviations from model assumptions (using
Eq. (A5)) results in only minor differences (see Appendix).
For φh, two models are presented. The first (Eq. (19)) does
not include low-wavenumber contributions. This model severely
overestimates φh. The second model includes low-wavenumber
contributions (Eq. (20)), and fits the DNS φh reasonably.
Deviations from other model assumptions are shown to have
a minor effect on modelled φh, compared with the effects of
neglecting low-wavenumber contributions. This implies that
large eddies (corresponding to large length-scales approximated
in this analysis by �) play a fundamental role in determining
the shape of φh, consistent with the sensitivity analysis using field
measurements in section 3. While this has long been recognized
under strongly unstable conditions – sometimes referred to as
‘local free convection’ (Wyngaard et al., 1971; Businger, 1973;
Zilitinkevich et al., 2006) – it has not been recognized as significant
under mildly unstable conditions such as those considered here.

6. Discussion

In this section, the results in the previous section are compared
with previous studies in the literature. Particular attention is
devoted to the k−1 region in the buoyancy variance spectrum,
focusing on its stability-dependence, its implications for the
development of mixing-length models, and to its role in observed
departures from MOST.

6.1. Comparison with previous studies

While several DNSs of the stably stratified (e.g. van de Wiel et al.,
2008; Chung and Matheou, 2012; Ansorge and Mellado, 2014;
He and Basu, 2015) and free convective (e.g. van Heerwaarden
et al., 2014; Garcia and Mellado, 2014; Mellado et al., 2015;
van Heerwaarden and Mellado, 2016) boundary layer exist in
the literature, relatively few DNS studies of an idealized, mildly
unstable ASL exist. It is this gap that the DNS results here attempt
to fill. Furthermore, while the Reynolds number is low compared

to the ASL, it is higher than comparable DNSs in the literature
( Iida and Kasagi, 1997; Dong and Lu, 2005; Zonta and Soldati,
2013; Garai et al., 2014). Several heated, wall-bounded turbulent
DNS studies have been performed at higher Reynolds numbers
(Abe et al., 2004; Zhu et al., 2010; Zhang et al., 2015), but these
studies treat the temperature field as a passive scalar, neglecting
the impacts of buoyancy on the flow velocities. Buoyancy-driven
structures, such as thermals, are known to alter the turbulent
velocity field (de Bruin et al., 1993; Choi et al., 2004; Li and
Bou-Zeid, 2011), as evidenced by the key role of large eddies in
our results, even under mildly unstable stratification.The DNS-
estimated MOST functions compare reasonably with accepted
MOST functions (Figure 5), albeit over a small range of ζ .
The DNS-estimated spectra lack an extended inertial subrange,
as expected, but are consistent with other features observed in
field experiment data, such as the cut-off wavenumbers and
low-wavenumber contributions (Figure 6). Finally, the relative
evolution of the integral length-scales Ib and Iw with changing
stability is correctly estimated by the DNS.

The DNS results are consistent with earlier studies implicating
coherent structures in the dissimilarity of turbulent transport of
heat and momentum (de Bruin et al., 1993; Choi et al., 2004;
Li and Bou-Zeid, 2011). Several studies have suggested canopy
impacts as a key factor in the dissimilar transport of heat and
momentum (Katul et al., 1997; Patton et al., 2015). Canopy
effects may well contribute, but we show in this study that they
are not essential for the breakdown of the Reynolds analogy.
Furthermore, while entrainment at the top of the boundary layer
can cause deviations from MOST scaling (van de Boer et al., 2014),
it cannot be essential to the breakdown of the Reynolds analogy,
since the DNS used here does not include any entrainment flux.
Finally, the existence of dissimilarity is not solely an artifact of
weak non-stationarity at large scales, or instrument filtering at
fine scales infecting field experiments. The DNS is stationary and
is subject to negligible measurement errors.

Several previous studies have proposed theories for the shapes
of φm, and its dissimilarity with φh. One set of studies adopt a
heuristic model of turbulent eddy fluxes, in which ‘dominant’,
wall-attached eddies (Gioia et al., 2010) transport turbulent
excursions of velocity and temperature, with eddy overturning
velocities determined by a simplified TKE budget (Katul et al.,
2011; Li et al., 2012, 2016a; Salesky et al., 2013). Li et al. (2012)
propose an explanation for the dissimilarity in this framework,
suggesting it is due to ‘scale resonance’ between fluctuations of
vertical velocity and temperature. Another set of studies take
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also given (Businger et al., 1971). [Colour figure can be viewed at wileyonlinelibrary.com].

a different approach, based on cospectral budgets (Katul et al.,
2013, 2014; Li et al., 2015a, 2015b). The cospectral budgets are
solved by parametrizing pressure-strain and flux-transfer terms,
allowing them to be solved for the turbulent Prandtl number
Prt = φh/φm, in terms of φm, ζ and other parameters related to
the spectra and cospectral budget parametrizations. In particular,
Li et al. (2015b) use a cospectral budget framework to demonstrate
the potential significance of the k−1 region in the temperature
variance spectrum in explaining the dissimilarity between φh

and φm, manifested as variations in Prt = φh/φm with ζ . Using
the same idealized spectra used in this study, they show that the
dissimilarity increases as the k−1 region is given more prominence
in the parametrized temperature variance spectrum. The DNS and
idealized model also reproduce this result: as the k−1 region grows
larger (i.e. �/lb increases), φh decreases (Eq. (22)).

In contrast to previous studies, the approach proposed here
solves for φm and φh explicitly, in terms of φw and φb and other
parameters related to the spectra. This approach avoids the need
for parametrizations of terms in the cospectral budget, which may
be particularly ill-suited to low Reynolds numbers (McColl et al.,
2016). Our model can be viewed as describing the partitioning
of kinetic (φw, Fww) and potential energy (φb, Fbb) between the
turbulent transport of momentum (φm) and heat (φh).

6.2. Stability-dependence of k−1 region

Over the small range of ζ considered in this study, �/lb increases
with increasing −ζ (Figure 9), suggesting the k−1 region grows
with increasing instability. This appears to be in contrast to
previous field experiments, where the k−1 region disappears as
instability increases beyond some threshold (Kader and Yaglom,
1991; Katul et al., 1995). There are several possible explanations
for this inconsistency. First, the discrepancy may be real: indeed,
the existence and stability-dependence of a k−1 region in the
temperature variance spectrum is not yet well-established (Li
et al., 2015b). Second, the discrepancy may be real but small: the

DNS spans a relatively small range of near-neutral conditions,
and the increase in �/lb with increasing −ζ is relatively small.
In contrast, ASL measurements span much greater ranges of
ζ , and report that �/lb decreases significantly. Therefore, the
discrepancy may be just a local deviation from a larger-scale
trend. Third, the discrepancy may be due to differences in
definitions used between the DNS and ASL studies. Because
of the low Reynolds number of the DNS, characteristic features
of atmospheric spectra may be underdeveloped or absent in the
DNS (e.g. the inertial range k−5/3 region). The k−1 region fit to the
DNS spectra should be interpreted as an ‘effective’ k−1 region that
serves to include first-order effects of all large eddies in our analysis
(Figure 8). Furthermore, the presence of a hard upper lid in our
simulation – corresponding to a free-troposphere with infinite
stability – is an idealization that may also contribute to differences
between large-eddy length-scales estimated from the DNS and
ASL measurements. Hence, DNS-observed �/lb is not directly
comparable with ASL measurements. In fact, close examination
of Figure 6 reveals that the ∼ k−1 region (0.03 ≤ f ≤ 0.4) in
the Fbb spectrum decreases with increasing −ζ , consistent with
previous experimental studies. It appears that, while the DNS k−1

region is decreasing with increasing −ζ , as expected, even lower
frequency contributions are increasing, causing the estimated �

to increase.

6.3. Implications for mixing-length models

A key result is that single mixing-length models, which
parametrize turbulence based on a master length-scale, appear to
be insufficient for capturing dissimilarity in heat and momentum
transport. A model based on a single length-scale implies
the relevant compensated spectra (i.e. pre-multiplied with k)
have distinct maxima. Even spectral models, which admit
contributions from many different length-scales, may still assume
the presence of a peak in the spectra (e.g. Claussen, 1985). Spectral
peaks have also been used as a summary statistic in describing

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2017)

wileyonlinelibrary.com


Role of Large Eddies in Breakdown of the Reynolds Analogy

field experiment data (e.g. Kaimal and Finnigan, 1994). However,
the presence of a k−1 region in the temperature variance spectrum
means we should not expect to find a distinct peak in the kFbb

compensated spectrum. Mixing-length models based on a ‘master
length-scale’ are still widely used in both the atmospheric science
(e.g. Mellor and Yamada, 1982; Janjić, 1990; Nakanishi, 2001) and
fluid mechanics (e.g. Antonia and Kim, 1991; Scagliarini et al.,
2015) literature. The results from this analysis suggest that, while
one length-scale is insufficient to capture heat and momentum
transport dissimilarity, a relatively small number (possibly even
two) may suffice, when incorporated into a spectral framework.
These length-scales are not determined from spectral peaks but
can be inferred from wavenumbers at which crossovers from one
spectral scaling regime to another occur.

6.4. Does turbulent heat transport obey MOST?

These results also suggest that surface layer temperature/buoyancy
transport is not strictly Monin – Obukhov similar for mildly
unstable and near-neutral conditions (McNaughton and Brunet,
2002; van de Boer et al., 2014), contrary to textbook knowledge
(Kaimal and Finnigan, 1994). This is because φh is also a function
of �, rather than just local length-scales. While it is known
that the velocities u and v are not MO-similar, there is still
substantial disagreement in the literature on the status of b.
Some more recent field experiments suggest b is not MO-similar
(McNaughton and Brunet, 2002). On the other hand, both LES
(Khanna and Brasseur, 1997; Maronga and Reuder, 2017) and
other recent field studies (Högström, 1989; de Bruin et al., 1993;
Choi et al., 2004; Li and Bou-Zeid, 2011) suggest it is.

However, the LES studies are vulnerable to artifacts due to the
SGS filter and to parametrizations near the wall, making it difficult
to draw firm conclusions from these results. In arguing that b
obeys MOST, the relevant field studies show that the correlations
Ruw and RwT can be modelled reasonably with empirical functions
that are solely functions of ζ , and some calibration parameters.
Our DNS exhibits a similar relation between Ruw, RwT and ζ (not
shown, but consistent with, e.g., Figure 6 of Li and Bou-Zeid,
2011). They argue that this is evidence for MO-similarity of heat
and momentum transport. However, since our DNS agrees with
these results, yet our analysis (Figure 10) clearly demonstrates
that heat transport need not be MO-similar, there appears to
be a contradiction. We resolve this contradiction by noting that
dependence on larger length-scales, such as the height of the ABL,
may well be hidden in the calibration parameters of the empirical
functions fit to the data in previous field studies. Indeed, the
�-dependence in Eq. (22) enters through a term that is relatively
insensitive to variations in ζ :

{
1 + 2

5
log

(
�(ζ )

lb(ζ )

)}−1

,

where � and lb are dependent on ζ . Therefore, it is possible that,
while the calibration parameters do not vary significantly with
ζ , they still encode an important dependence on �. This result
demonstrates the value of a DNS study, where theories can be
tested using a single, internally consistent set of results.

Previous LES (Khanna and Brasseur, 1997; Maronga and
Reuder, 2017) and field (Johansson et al., 2001) studies show that
the relation between φm and ζ displays more scatter compared
to the relation between φh and ζ . This result is not inconsistent
with our study. The relation between φw and ζ displays more
scatter compared to the relation between φb and ζ (Khanna and
Brasseur, 1997; Johansson et al., 2001; Maronga and Reuder,
2017). Our spectral model for φm is a function of φ3

w; our model
for φh is a function of φwφ2

b . Therefore, our model predicts
that φm (z/L) should display more scatter than φh (z/L), solely
because φw (z/L) displays more scatter than φb (z/L). The reasons
for differences in scatter between φw (z/L) and φb (z/L) remain
to be determined, and may include contributions from large

eddies. Our study shows that, given φw and φb, large eddies
play a significant role in determining the shape of φh for the
mildly unstable conditions and idealized ABL considered in this
study.

6.5. Limitations

Our study is subject to various limitations, which we discuss
in more detail here. First, as previously noted, the DNS is for
a relatively low Reynolds number. This is in contrast to the
high Reynolds number ASL, where the spectrum of turbulence
spans six to seven decades, and the separation between � and the
Kolmogorov microscale spans five to six decades. DNS spectra lack
developed inertial subranges, and Kolmogorov inertial subrange
scaling theory applies to a very small range of scales. It also
means that results from this analysis (for instance, the scaling
of lw, lb and �) are still dependent on the Reynolds number.
For this reason, we refrain from proposing scaling laws for these
quantities in the ASL. However, the normalized statistics are
consistent with ASL measurements (Figure 5), as are the low-
wavenumber components of the spectra (Figure 6), which are
more relevant to heat and momentum transport. The DNS can
offer a useful new perspective on low-frequency contributions
to φm and φh. Furthermore, a separate analysis based on field
measurements – and independent of the DNS – is consistent with
the results of the DNS (Figure 3).

Second, like many other studies, the geometry is highly idealized
compared to the ASL. The bottom boundary is smooth, so surface
roughness is neglected. The top boundary is impermeable and
not heated or cooled, so entrainment at the top of the ABL is
also neglected. The finite vertical and horizontal lengths of the
domain may also alter the flow statistics (Metzger et al., 2007;
Monty et al., 2009). This configuration can be thought of as a
quasi-stationary ABL over a smooth air – water interface with
strong free-troposphere stability.

Third, the range of ζ considered is quite small. Our analysis
is restricted to the constant-flux layer, which is small for low
Reynolds numbers. Nonetheless, while there are many studies
of neutral wall-bounded turbulence (ζ = 0), and others of free
convection (ζ → −∞), our results span a mildly unstable set of
conditions representing the transition between neutral and free-
convective regimes that have received relatively little attention
from DNS studies. Moreover, for the range of ζ considered here,
the integral length-scale of vertical velocity variance (Iw) grows
rapidly relative to the integral length-scale of buoyancy variance
(Ib), suggesting this range is particularly significant in the onset
of buoyancy effects on the flow.

Fourth, the model spectra used in this study are highly idealized,
and their fit with DNS spectra is not always perfect (Figure 8).
We have deliberately chosen functional forms with heritage in
the literature (Katul et al., 2013; Li et al., 2015b; McColl et al.,
2016) that capture crossovers between different scaling regimes,
but also keep the analysis tractable. Many corrections could
be made to the idealized forms used here: for instance, an
exponential correction could be added at high wavenumbers
to account for viscous truncation of the inertial range at
low Reynolds number. However, adding complexity sacrifices
analytical tractability and clouds interpretation. Hence, we work
with an analytically tractable, maximum-simplicity model which
matches key features of the observed spectra to first order. We
have also chosen forms that will easily generalize to high Reynolds
number ASL conditions, at the expense of a perfect fit with the
DNS spectra. For instance, while the low Reynolds number DNS
spectra do not feature a prominent inertial subrange, we base
our idealized spectra around this characteristic feature of high
Reynolds number turbulence. The k−1 region is treated in this
study as a simple, bulk parametrization of all large-scale motions.
As new information on low-frequency contributions to spectra
are revealed in future, they may be readily incorporated into this
framework.
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7. Conclusions

This study investigates the role of large eddies in the dissimilar
turbulent transport of heat and momentum in the ASL. It is
difficult to cleanly measure low-frequency contributions to tur-
bulent transport in the ASL due to non-stationarity and potential
contributions from surface roughness, entrainment and canopy
effects. A DNS of an idealized, mildly unstable ASL is performed,
allowing the role of large eddies in the breakdown of the Reynolds
analogy to be identified, independent of other mechanisms.
While the Reynolds number is low (Reτ = 687), this is among the
highest Reynolds number DNS of a heated, sheared wall-bounded
flow yet performed. Despite the low Reynolds number, DNS
estimates of MOST statistics φb, φm and φh are consistent with
field measurements (DNS-estimated φw is at the low end of
field experiment measurements). The DNS-estimated turbulent
spectra lack a developed inertial range, as expected for such low
Reynolds numbers, but remain consistent with low-frequency
components of Fww and Fbb reported from field experiments.
In particular, the DNS kFbb compensated spectra exhibit broad
peaks that are consistent with a k−1 region, observed in several
field studies. Consistent with these studies, the k−1 region shrinks
as instability increases. Overall, these results suggest that DNS can
provide a new platform for analyzing ASL theories, particularly
the role of low-frequency spectral components, perhaps corre-
sponding to large-scale coherent structures. In particular, they
demonstrate that the breakdown of the Reynolds analogy in the
unstable ASL is not necessarily a result of factors such as surface
roughness, canopy effects or entrainment, which are not included
in the DNS (although these factors may contribute in the ASL).

Models for φm and φh are derived using theory, observations
and the DNS. The derived models describe the partitioning
of kinetic (φw, Fww) and potential energy (φb, Fbb) between
the transport of momentum (φm) and heat (φh). A spectral
model based on a single length-scale is able to reproduce
the DNS-observed φm, consistent with MOST. In contrast,
modelling φh with a single length-scale results in a substantially
biased estimate. We show that introducing a k−1 region in the
parametrized Fbb spectrum, which requires the addition of a
larger length-scale �, removes the model bias. These results are
consistent with sensitivity analyses based on field measurements
that are independent of the DNS. The key role of � in determining
the shape of φh suggests turbulent transport of heat in the ASL
is not MO-similar. We reconcile this result with previous field
studies that argue heat transport is MO-similar, by noting that
any dependence on larger length-scales could be hidden in the
calibration constants of empirical functions linking φh and ζ .

These results suggest widely used single-mixing-length models
may be insufficient for characterizing dissimilar transport of heat
and momentum. However, there is potential for parsimoniously
modelling crucial low-frequency contributions to turbulent heat
transport by using an idealized spectral framework, perhaps
parametrized with as few as two length-scales. As advances in
computing make higher Reynolds number DNS feasible, low-
frequency spectral components can be parametrized in more
detail and readily included in this framework. Developing scaling
relations for parametrized length-scales (and their (in)sensitivity
to Reynolds number) will be a key future research task. Future
studies are also needed to characterize turbulent heat transport
beyond the narrow range of ζ considered in this study.
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Appendix

Sensitivity to ’constant flux’ and equilibrated budget assump-
tions

Corrections are derived here to account for violations of
assumptions used in deriving the original models for φm and
φh. Replace Eqs (2), (3), (11) and (13) with

u′w′ = −Amu2
∗, (A1)

w′b′ = Ahu∗b∗, (A2)

ε =
(−u′w′)2

kvu∗z

{
φm

( z

L

)
− z

L

}
+ Bm, (A3)

Nb = A2
hb2∗u∗
kvz

φh + Bh, (A4)

respectively. Here, Am and Ah are corrections to the ‘constant-flux’
layer assumption. Bm and Bh are corrections to the assumptions

of equilibrated TKE and b′2 budgets, respectively. Repeating the
previous derivations using these new relations, we obtain new
expressions for the mixing-length models:

φm

( z

L

)
= z

L
+ 25/2π

(5CK)3/2

1

A2
m

(
kvz

lw

)
φ3

w − kvzBm

A2
mu3∗

, (A5)

φh

( z

L

)
=

(
25/2π

53/2CTC1/2
K

)
1

A2
h

(
kvz

l1/3
w l2/3

b

)
φwφ2

b − kvzBh

A2
hu∗b2∗

. (A6)

We also obtain a new expression for the new model:

φh

( z

L

)
=

(
25/2π

53/2CTC1/2
K

)
1

A2
h

⎛
⎝ 1

1+ 2
5 log

(
�
lb

)
⎞
⎠(

kvz

l1/3
w l2/3

b

)
φwφ2

b

− kvzBh

A2
hu∗b2∗

. (A7)

The constants Am, Ah, Bm and Bh are estimated from the DNS,
and used to correct for violations of these assumptions.
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